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Abstract—Objects falling from buildings, a frequently occur-
ring event in daily life, can cause severe injuries to pedestrians
due to the high impact force they exert. Surveillance cameras
are often installed around buildings to detect falling objects, but
such detection remains challenging due to the small size and
fast motion of the objects. Moreover, the field of falling object
detection around buildings (FODB) lacks a large-scale dataset for
training learning-based detection methods and for standardized
evaluation. To address these challenges, we propose a large
and diverse video benchmark dataset named FADE. Specifically,
FADE contains 2,611 videos from 25 scenes, featuring 8 falling
object categories, 4 weather conditions, and 4 video resolutions.
Additionally, we develop a novel detection method for FODB
that effectively leverages motion information and generates small-
sized yet high-quality detection proposals. The efficacy of our
method is evaluated on the proposed FADE dataset by comparing
it with state-of-the-art approaches in generic object detection,
video object detection, and moving object detection. The dataset
and code are publicly available at https://fadedataset.github.io/
FADE.github.io/

Index Terms—Falling object detection, a large diverse video
dataset, baseline method.

I. INTRODUCTION

VER the past few decades, with the continuous expan-
O sion of urbanization, high-rise buildings have sprung up.
Some residents of these buildings throw objects from above
without caution, potentially leading to repeated injuries and
incidents. According to a report [1] of the U.S. Bureau of
Labor Statistics, there are more than 50,000 “struck by falling
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Fig. 1. Falling object incidents around buildings may pose serious risks to
human life and public safety.

objects” injuries every year in USA. To highlight the potential
danger posed by objects falling from tall buildings, we present
a specific example: If a 200-gram apple falls from a 30-
meter-high building, the impact duration is approximately 0.01
seconds. Based on the momentum theorem [2], this results in
an equivalent impact force of roughly 49.5 kilograms. Such
incidents can pose serious threats to public safety (see Figure 1
for visualization). To mitigate such incidents, several countries
have enacted laws prohibiting the act of throwing objects from
buildings, including the USA [3], Singapore [4], and China [5].

At the same time, intelligent video surveillance (IVS) has
become a critical technology for ensuring public safety [6],
fueled by recent advances in computer vision, including object
detection [7], [8], [9], anomaly detection [10], [11], [12], [13],
human identification [14], [15], [16], [17], tracking [18], [19],
[20], [21], and video understanding [22], [23], [24], [25], [26].
These computer vision-based IVS methods provide benefits
such as low cost, high accuracy, and reduced dependence on
manual labor. Inspired by the successful applications of these
techniques and supported by the availability of surveillance
cameras around buildings, several research institutions and
government agencies have begun exploring IVS algorithms for
detecting falling object incidents around buildings (FODB).
However, these IVS technologies often rely on large-scale
datasets to train learning-based models, yet such a dataset is
currently unavailable in the FODB domain. In fact, the FODB
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Fig. 2. Comparison the tasks of FODB and MOD. By observing four frames (two frames above are from our dataset, and two frames below are from the
LASIESTA dataset [30]) from two video sequences, we can find that the moving object in FODB task is much smaller and has larger displacement between
succesive frames. To see the falling object in the FODB task clearly, we enlarge the object and place it in the lower right corner of the video frame.

TABLE I

COMPARISON OF OUR FADE DATASET WITH THE PRIOR MOD DATASETS. “GT FRAMES” MEANS THE GROUND TRUTH FRAMES. THE DATASETS ARE
SORTED BY THE PUBLISHING TIME IN ASCENDING ORDER. AS CAN BE SEEN, OUR FADE DATASET HAS THE LARGEST NUMBER OF VIDEOS,
ToTAL FRAMES, GT FRAMES, AND SCENES

Dataset Total videos T  Total frames  GT frames Scenes Frame-wise IOU (%)
SABS [27] 9 6,408 2,000 9 43
SegTrack V2 [31] 14 976 976 14 27
SBI [32] 14 5,024 14 14 31
GTFD [29] 25 1,067 1,067 7 37
CDnet 2014 [28] 31 90,000 90,000 11 33
LASIESTA [30] 48 18,425 18,425 4 35
DAVIS 2016 [33] 50 3,455 3,455 15 32
FADE (Ours) 2,611 245,177 245,177 25 13

task can be regarded as a special case of the moving object
detection (MOD) task, and it may appear feasible to utilize
existing MOD datasets, such as SABS [27], CDnet 2014 [28],
GTFD [29], and LASIESTA [30], to train FODB algorithms.
However, this approach is limited by the significant disparity
between the two tasks. Specifically, moving (falling) objects in
FODB are typically much smaller and move at higher speeds
than the objects in standard MOD scenarios.

To better illustrate the differences between the FODB task
and the MOD task, we present a visual comparison in Figure 2.
As shown in Figure 2, moving objects in existing MOD
datasets typically occupy large areas of the image, whereas
falling objects in the FODB task are much smaller and
cover only a small portion of the scene. Besides, falling
objects exhibit rapid motion, resulting in (1) motion blur

and (2) large displacements between adjacent video frames.
These factors make falling objects difficult to detect and are
rarely encountered in MOD datasets. Furthermore, none of
the existing MOD datasets include categories corresponding to
falling objects around buildings. Consequently, it is necessary
to construct a large and diverse benchmark dataset to evaluate
the performance of FODB algorithms. Such efforts are critical
for advancing research and facilitating real-world deployment
in FODB domain.

In this work, we present a video benchmark dataset for
FODB, termed FADE, which comprises 2,611 videos cap-
tured across diverse scenes. Specifically, the dataset includes
245,177 annotated video frames spanning 25 scenes, 8 object
categories, 4 video resolutions, 4 weather conditions, 3 camera
angles, and 2 lighting conditions. As can be seen in Table I,
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our dataset FADE has richer data compared to the existing
MOD datasets. The size of the falling object in our FADE
is small with a median area of about 20 pixels, which is
also much smaller than the small object (area < 322 pixels)
defined in the COCO dataset [34]. We also introduce a new
baseline method, FADE-Net, which leverages motion cues to
complement appearance features and incorporates a small-
object mining region proposal network to generate high-quality
proposals for small falling objects. We use the evaluation
metrics in the MOD task to benchmark several methods of
3 different tasks (MOD, generic object detection, and video
object detection) on our dataset. We also explore a new metric,
time range overlap (TRO), to evaluate the performance of the
detection methods on localizing the object falling incidents.
The experimental results indicate that FODB is a challenging
task and validate the effectiveness of our presented method.
The main contributions of our work are three-fold:

e We construct a new video dataset called FADE, which,
in terms of application scenarios, is the first dataset for
falling object detection around buildings (FODB). This
dataset is large and diverse, which covers various scenes
and complex conditions.

e We explore a new baseline method FADE-Net for the
FODB task, which effectively utilizes motion cues and
can generate high-quality proposals for small-sized falling
objects detection.

o We evaluate the proposed FADE-Net, and other methods,
i.e. MOD methods, generic object detection methods and
video object detection methods, on our FADE dataset
comprehensively, which can be served as a benchmark
for future research on FODB.

II. RELATED WORK
A. Moving Object Detection Dataset

Moving Object Detection (MOD) is a basic task in computer
vision, and some MOD datasets have been released for training
and testing the MOD algorithms. Early MOD datasets, such as
Wallflower [35], SegTrack [36], and I2R [37], are limited in
scale. For instance, Wallflower [35] is one of the earliest MOD
datasets, containing only 7 video sequences, each with a single
ground truth frame. SegTrack [36] consists of only 6 video
sequences and 215 annotated frames. I2R [37] provides 10
video sequences, including scenes with dynamic backgrounds,
challenging weather conditions, and gradual illumination vari-
ations. Later, some large scale and complicated MOD datasets
are constructed. For instance, SABS [27] contains videos with
10 categories, and each video has 800 training frames. Some
testing video frames in FBMS 59 [38] and SegTrack V2
[31] contain multiple moving objects. GTFD [29] provides
a collection of 25 videos with both rigid and non-rigid
moving objects. LASIESTA [30] consists of 45 videos and
18,425 video frames, recorded by the moving and static
cameras. CDnet 2012 [39] and CDnet 2014 [28] serve as
benchmarks for the IEEE Change Detection Workshop, with
CDnet 2014 adding 22 videos and 5 new categories to CDnet
2012. Captured in the outdoor environment, BMC 2012 [40]
includes a total of 29 real and synthetic videos in different
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weather conditions. DAVIS 2016 [33] supplies 50 high-quality
and densely annotated videos. SBI [32] comprises 14 image
sequences along with corresponding ground truth backgrounds
and is the first dataset designed for evaluating background
initialization MOD methods.

Unlike these MOD datasets, FADE is the first dataset
for the falling object detection around buildings task which
contains numerous videos and diverse scenes. The quantitative
comparison between our FADE and the prior MOD datasets
is shown in Table I.

B. Moving Object Detection

MOD has been extensively investigated due to its wide
range of applications [41], [42], [43]. Many unsupervised
MOD methods have been explored and can be broadly clas-
sified into two categories: background modeling and feature
extraction. Specifically, for background modeling, parametric
Gaussian mixture methods [9], [44], [45] have been proposed
to represent the background in MOD. Barnich and Droogen-
broeck [8] update the background by applying a novel random
selection strategy. Baf et al. [46] apply Choquet integral [47] as
an aggregation operator to aggregate color and texture features
for MOD. Lin et al. [48] propose a dual-rate background
modeling framework for foreground object detection, which
leverages both short-term and long-term background models
to enhance the accuracy of foreground inference. For feature
extraction, Yang et al. [49] adopt an optical flow based
method to detect moving objects. Zhou et al. [11] use motion
information to enhance detection with motion fusion blocks
that compressing video clips into a single image. Thanikasalam
et al. [50] exploit a target-specific Siamese attention network
that employs residual and channel attention modules to capture
the global and channel-wise information of moving objects.
Shang et al. [51], [52] consider MOD as a robust principal
component analysis problem involving robust subspace learn-
ing and tracking. To address sudden and gradual background
changes, Dong and DeSouza [53] explore a clustering feature
space method to represent different background appearances.

The developments of deep learning [54], [55], [56] have
greatly promoted the progress of supervised MOD methods.
Early approaches can be broadly classified into six main
categories: basic CNN [57], [58], [59], [60], [61], deep CNN
[62], [63], 3D CNN [64], [65], ConvLSTM [66], FCN [67],
and GAN [68], [69]. Specifically, CTFU-Net [70] hierarchi-
cally integrates the local feature extraction capabilities of
CNNs with the global context modeling of Transformers to
address dynamic scenes. TransBlast [71] employs an SVD-
based subspace loss and Barlow Twins self-supervision to
preserve foreground details while reducing the need for exten-
sive annotations. GraphMOS-U [72] and GraphIMOS [73]
are representative GNN-based approaches. GraphMOS-U [72]
enables minimal-annotation underwater MOD by initializing
Mask R-CNN with domain-specific feature fusion and Sobolev
optimization. GraphIMOS [73] replaces transductive graphs
with inductive block-diagonal GNNs to support real-time
deployment on unseen videos.

Although numerous MOD methods have been proposed, few
can be applied to the FODB task. In this work, we provide
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Fig. 3. To make our dataset design more accessible, we follow the commonly used Kaggle weather dataset [77] and categorize weather conditions into four

broad types: fair, cloudy, overcast, and rainy.

benchmark results of state-of-the-art MOD methods on our
proposed FODB benchmark dataset.

C. Falling Object Detection

There are a few works [74], [75], [76] concentrated on
falling object detection. Specifically, [74] targets the predic-
tion of potential falling objects (much like moving objects)
in indoor environments by leveraging 3D point cloud data
captured by distance sensors. [75] focuses on detecting objects
which have already fallen (these are stationary) on railway
tracks using ultrasonic sensors and signal coding sequence
technology. [76] addresses falling hazards, that is, identifying
stationary places a person might fall from or into, by analyzing
the positional relationship between hazardous objects and
workers at construction sites.

FODB is a critical task, as such incidents occur fre-
quently, with approximately 50,000 cases reported annually
in the United States [1]. These incidents pose fatal risks to
pedestrians due to the high impact force of falling objects
(see Section I). However, existing falling object detection
methods [74], [75], [76] are not designed with small object
detection and motion information utilization in mind, making
them unsuitable for direct application to FODB scenarios,
which involve detecting fast-moving small objects. Besides,
the FODB field also lacks a public dataset, limiting both
the training of learning-based methods and the evaluation of
falling object detectors. To solve these issues, we construct the
first large-scale benchmark dataset for FODB, and introduce
a dedicated FODB method, FADE-Net.

III. THE PROPOSED FADE DATASET

To advance research in the area of falling object detection
around buildings (FODB), we construct and release the first
benchmark dataset. In this section, we provide a detailed
introduction to our FADE dataset, covering metadata, dataset
construction, dataset splits and statistics, ethical considera-
tions, licensing, maintenance plan, and evaluation metrics.

A. Metadata

To provide a comprehensive FODB dataset, we col-
lect videos in diverse weather conditions, lighting cases,

scenes, camera angles, and video resolutions. Example video
frames are shown in our dataset (https://fadedataset.github.io/
FADE.github.io/). Our metadata is defined as follows:

Object Category. To cover classes of the falling objects
around buildings as many as possible, we collect 8 category
of objects as follows: clothes, shoes, kitchen waste, books,
spitballs, bottles, packaging bags, and packaging boxes.

Weather Condition. Different weather conditions lead to
different light intensities, which affect the contrast between
falling object and the background. To make our dataset
design more accessible, we follow the commonly used Kaggle
weather dataset [77] and classify weather conditions into four
broad categories: fair, cloudy, overcast, and rainy, as illustrated
in Figure 3.

Lighting Condition. Generally, when the light intensity is
lower than 0.04 Lux, the image of the surveillance video will
change from the RGB mode to the grayscale mode. Therefore,
to ensure the generality of our dataset, we provide videos in
both RGB mode and grayscale mode, corresponding to light
intensities greater than and less than 0.04 Lux, respectively,
as shown in Figure 4.

Scene. The scenes in our dataset are diverse. Specifically,
the FADE dataset includes 18 distinct scenes that cover a
wide range of environments where falling incidents may occur,
such as classroom buildings, office buildings, dormitories,
apartments, and buildings under construction, as illustrated in
Figure 4. Notably, in our dataset, a scene refers to a specific
viewpoint of a building. Across different scenes, the buildings
appear distinct due to variations in the camera viewpoints.

Camera Angle. The videos in our dataset cover 3 different
camera angles: 30°, 45°, and 60°. This design reflects real-
world FODB surveillance setups, where cameras are typically
installed 30 meters away from buildings, with different floors
monitored using cameras positioned at varying angles.

Video Resolution. Usually, the surveillance video contains
a variety of resolutions. To include multifarious data, we
provide videos of 4 resolutions: 1280 x 720, 1920 x 1080,
2560 x 1440, and 2592 x 1520.

B. Dataset Construction

This section provides a detailed description of our
dataset construction process, including data preparation, data
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(a) Dormitories (RGB mode)

(b) Classroom buildings (RGB mode)
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(c) Office buildings (RGB mode) (d) Classroom buildings (grayscale mode)

Fig. 4. Our dataset includes two modes (RGB and grayscale), captured across various scenes such as dormitories, classroom buildings, and office buildings.

collection, data format, and data annotation. Moreover,
we provide dataset documentation, annotation guidelines,
intended use cases, structured metadata, example videos, and
evaluation code on our website https://fadedataset.github.io/
FADE.github.io/index.html

1) Data Preparation: The diversity of object categories
is important for training models for falling object detection
around building. As stated above, the falling objects in our
dataset span several common categories, including clothes,
shoes, kitchen waste, books, spitballs, bottles, packaging bags,
and packaging boxes. In addition, each category contains a
diverse set of object instances. For example, the kitchen waste
category includes items such as banana peels and uneaten
apples.

2) Data Collection: We recruit seven volunteers and spend
a year and a half to collect the video data. Specifically, we
throw objects from the high-rise buildings of the corresponding
university, and use a wide dynamic range camera, equipped
with a 1/3” progressive scanning CMOS sensor and dot matrix
LED infrared lamp to record the whole process of these
events. The highest output video quality of the camera is
2592 x 1520 @ 30 FPS. We observe that some falling objects
in our recorded video exhibit motion blur due to their high
falling speed. Although recording videos with CMOS cameras
equipped with global shutters and high FPS can mitigate this
issue, the use of such specialized cameras presents two main
drawbacks: (1) videos captured with these cameras often suffer
from KTC noise [78], introducing visual artifacts; and (2) most
existing surveillance systems deployed worldwide for monitor-
ing falling objects use general-purpose, low-cost sensors. As
a result, models trained on data from these specialized CMOS
cameras may be less applicable to real-world FODB scenarios.

3) Data Format: The annotation format of our dataset
is PASCAL VOC [79] style, which is one of the most
popular dataset annotation formats. The detailed data format
is provided at https://fadedataset.github.io/FADE.github.io/
document.html

4) Data Annotation: The annotation process of our dataset
lasts for half a year, including two rounds. In the first round,
the novice annotator labels the video. In the second round, the
expert annotator checks the annotation to improve the quality.
Different from the pixel-by-pixel annotation method of the

450
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Fig. 5. Statistics of each object category’s video number in our FADE dataset,
sorted by descending order.

MOD datasets [27], [29], [32], we adopt the annotation manner
used in the object detection task to generate the bounding box
around each falling object.

C. Dataset Division and Statistics

To provide a more intuitive understanding of our dataset,
we present several quantitative statistics, including the dataset
division, falling object sizes, the number of instances per
object category, and the proportion of object area relative to
the image.

1) Dataset Division: When splitting the dataset, we con-
sider five attributes for each video: video resolution, scene,
lighting condition, weather condition, and object category. It
is worth noting that the videos in our training, validation, and
testing sets collectively cover all labels from the five attributes
mentioned above. To better test the generalization of FODB
algorithms, the scenes in our training set, validation set, and
testing set (except for the scenes captured in rainy days) are
non-overlapped.

2) Dataset Statistics: We provide some statistical informa-
tion about the constructed dataset. As shown in Figure 5, to
make our FADE dataset with various falling object categories,
we collect the videos covering falling objects of eight cate-
gories. The percentage of falling objects with different weights
is shown in Figure 6.

Authorized licensed use limited to: Wuhan University. Downloaded on September 26,2025 at 06:49:14 UTC from |IEEE Xplore. Restrictions apply.



TU et al.: FADE: A DATASET FOR DETECTING FALLING OBJECTS AROUND BUILDINGS IN VIDEO

Mass (g)
0-10
10-50
50-100

mmm 100-200
= 200-500
= > 500

Fig. 6. Percentage of falling objects with different mass in our FADE dataset.

D. Dataset Ethics, License, and Maintenance Plan

To facilitate the use of our dataset, we provide details
regarding its ethical considerations, licensing terms, and main-
tenance plan in this section.

1) Ethics: We have full ownership of these videos supplied
in our FADE dataset, and all of the collected videos have
been authorized for free use by the corresponding university.
We inform the seven volunteers, who help us drop the objects
from buildings, in advance that their personal information (e.g.
faces and hands) may appear in the video, and we get their
permission. We conduct two improvements to solve the ethical
concerns in our dataset. 1) We have reviewed all the videos
and found that 32 of them contain people. Among these, 21
videos include appearances of volunteers who assisted in the
data collection process. For the 21 videos, the volunteers are
informed of their appearance and have signed on an informed
consent form to allow us to use the videos. The link of this
signed informed consent form is: https://fadedataset.github.io/
FADE.github.io/ethic.html. For the other 11 videos, we remove
them from our FADE dataset. 2) We have obtained autho-
rization from the corresponding university where the video
data was captured. All videos in the updated FADE dataset
are freely available for research on falling object detec-
tion. We upload the corresponding authorization files to our
dataset website (https://fadedataset.github.io/FADE.github.io/
ethic.html). Notably, the video in our dataset does not contain
any personally identifiable information or offensive content,
and we assume full responsibility in the event of any issues
related to data licensing.

2) License: Our FADE dataset is published under the CC
BY-NC-SA 4.0 license, which means everyone can use our
dataset for the non-commercial research purpose. Our code is
released under the Apache 2.0 license.

E. Evaluation Metrics

We use precision, recall, and F-measure to evaluate and
compare the performance of methods across different tasks,
including MOD, generic object detection, and video object
detection. Since the object size in our dataset FADE is small,
we treat a detection as a true positive if its IoU with the GT
is larger than 0.3. The F-measure is defined as:

(1 + B%) - precision - recall
F—measure =

6]

B2 - precision + recall
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We set the positive real factor 8 = 1, when we calculate the
F-measure.

Locating the falling incident temporally is crucial to find out
the perpetrator who throws the falling object. We therefore
design a useful metric named time range overlap (TRO) to
evaluate the ability of the algorithm in this regard. The design
of TRO is inspired by the DER (Diarization Error Rate) [83]
in the speaker diarization task. The TRO is defined as:

TR, N TR,
TRO = ————, (2
TR, U TR,
TR, = [T}, T}, TRy = [T}, T}), 3)

where TR, indicates the predicted time range and TR, denotes
the GT time range. 5 and T}, are the predicted and the GT
beginning time of a falling incident, respectively. T and T,
separately indicates the predicted and the GT ending time of
a falling incident.

IV. PROPOSED METHOD

Generic object detection methods rely heavily on appear-
ance features to detect objects. However, in the FODB
task, falling objects are typically small and often exhibit
blurred appearances due to motion blur caused by high-speed
movement, making them difficult to detect using appearance
features alone. To address this limitation, we propose a
method called FADE-Net, built upon Faster R-CNN [80] with
FPN [81] (see Figure 7). Specifically, FADE-Net introduces
a Moving Attention Module that incorporates motion cues
to complement appearance features for improved detection
of fast-moving objects. Additionally, a Small-Object Mining
Region Proposal Network (SMRPN) is integrated in our
FADE-Net to enhance the detection of small objects common
in FODB scenarios. The details of MAM and SMRPN are
described in the following sections.

A. Moving Attention Module (MAM)

Detecting falling objects around buildings based solely
on appearance features is challenging, as these objects are
often small and affected by motion blur due to their high
speed. To enhance detection accuracy, we leverage the inherent
motion characteristics of falling objects by designing a Moving
Attention Module that incorporates motion information as a
complementary cue to appearance features. Specifically, we
first employ a Moving Object Prediction Module to extract a
motion mask representing moving objects. This mask is then
fed into the proposed Moving Attention Module, where it is
fused with appearance features to produce more informative
representations for falling object detection. The designs of the
Moving Object Prediction Module and the Moving Attention
Module are detailed in the following sections.

1) Moving Object Prediction Module: To obtain motion
information as a complementary cue to appearance features
for improved falling object detection, we design a Moving
Object Prediction Module. Specifically, to balance robustness
and real-time performance, we adopt the MOD method MOG2
[45] to generate moving object masks as motion cues. The
masks are candidate moving object regions within the current
frame.
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Fig. 7. Overview of our proposed method, which is built upon the Faster R-CNN [80] framework with Feature Pyramid Network [81].“MAM” denotes the
Moving attention module. “C” and “A” denote classifier and anchor regressor, respectively. “Conv” and “AdaConv” indicate conventional convolution and the

adaptive convolution [82] layers, respectively.

2) Moving Attention Module: The generated moving object
mask, which serves as motion information, is fed into the
Moving Attention Module and fused with appearance fea-
tures to provide more robust representations for falling object
detection. Specifically, in our Moving Attention Module, the
appearance feature is represented by the feature map F from
the previous layer, with dimensions H x W x C. To enhance
the robustness of the appearance information, we apply both
average pooling and max pooling to F before fusion.

We then concatenate the averaged and max-pooled feature
maps with the moving object mask and feed them into a
convolutional layer followed by a Sigmoid activation to fuse
motion and appearance features. The fused output, after pass-
ing through the convolutional layer and Sigmoid activation,
forms a more robust representation, referred to as the moving
attention map, which serves as the output of our Moving
Attention Module. The process is defined as:

M = o(Conv(Concat(AvgPool(F), MaxPool(F), Mask))),
“)

where M is the resulting moving attention map, and o~ denotes
the Sigmoid function. It is worth noting that our Moving
Attention Module is applied at three locations, each positioned
after the downsampling stages in our backbone. All Moving
Attention Modules share the same moving object mask.

Overall, the proposed Moving Attention Module enables
our detection model to effectively integrate appearance and
motion information, resulting in more robust representations
for detecting falling objects around buildings.

B. Small-Object Mining RPN (SMRPN)

After introducing the Moving Attention Module, we now
present the Small-Object Mining RPN. While the Moving
Attention Module enables the model to leverage both appear-
ance and motion information for more robust detection of
small objects, the small size of falling objects may still
result in their features being lost during downsampling in the

backbone. To address this challenge, we design the Small-
Object Mining RPN (SMRPN), which integrates multi-level
features and employs dynamic thresholds to ensure that small
falling objects can be effectively captured by the model.

Specifically, SMRPN leverages features from all downsam-
pled levels to perform the initial regression, enabling the
model to effectively capture information across different object
scales. We also adopt an adaptive convolution [82] to align
anchor features with target features, allowing for more refined
regression and ultimately generating high-quality proposals for
small objects. In addition, to enhance the model’s ability to
detect typically small falling objects, we introduce an area-
based anchor mining strategy with a dynamic threshold that
adapts to object size in the first stage:

Vw
Threshold = max (0.20, 0.15 + a - log ~ ) .5

5

where « is a scale factor, set to 0.2 by default in our task.

V. EXPERIMENTS

In this section, we sequentially present the implementation
details of our method, the main results, the ablation study, an
analysis of the performance of optical flow-based methods,
and visualization results.

A. Implementation Details

Our method is fine-tuned on a pre-trained Faster R-CNN
[80] with a ResNet-50 [102] backbone. We use SGD as the
optimizer with a learning rate of 0.005, momentum of 0.9,
and weight decay of 0.0005. The model is trained for 15
epochs with a batch size of 2 on our dataset. The Moving
Attention Module consists of a convolution layer with a 7 x
7 kernel followed by a Sigmoid function. Its input includes a
moving object mask predicted by MOG2 [45] along with its
corresponding average pooling map and max pooling map. The
kernel size of the convolution layer in our moving attention
module is set to 7 X 7.
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TABLE I

PERFORMANCE OF DIFFERENT METHODS ON THE TESTING SET OF OUR FADE DATASET. THE BEST AND SECOND BEST PERFORMANCES ARE
HIGHLIGHTED IN BOLD AND UNDERLINE, RESPECTIVELY. DLA34 (DCNvV2 [84]) [85] INDICATES THAT SOME OF THE CONVOLUTIONS IN
THE DLA34 NETWORK ARE REPLACED BY DEFORMABLE CONVOLUTION V2 (DCNV2). FGFA (FLOWNET [86]) [87], FGFA (PWC-NET
[88]) [87], AND FGFA (RAFT [89]) [87] RESPECTIVELY INDICATE FGFA BASED ON THE OPTICAL FLOW METHODS OF FLOWNET,

PWC-NET, AND RAFT

Method Type F-measure  Precision Recall TRO FPS
FADE-Net (Ours) MOD-based Generic Object Detection 72.08 73.52 70.69 51.77 15.7
Faster R-CNN [80] + FPN [81] Generic Object Detection 35.56 54.55 26.38 32.47 16.7
YOLOVS [90] Generic Object Detection 33.67 54.77 24.31 34.12 32.8
DLA34 (DCNv2 [84]) [85] Generic Object Detection 22.57 20.04 25.83  24.69 22.7
DETR [91] Generic Object Detection 29.98 49.47 21.51 26.80 7.9
swin-B [92] Generic Object Detection 36.99 57.37 2729  36.63 8.3
RT-DETR [93] Generic Object Detection 40.15 59.24 3036 38.62 28.7
MOG [94] Moving Object Detection 17.96 12.85 29.80 2091 370.1
MOG?2 [45] Moving Object Detection 24.55 19.03 3457 48.03 331.8
GMG [95] Moving Object Detection 2.71 1.55 10.89 14.71 97.7
Vibe [8] Moving Object Detection 15.26 14.66 1591  23.85 488.5
CNT [96] Moving Object Detection 12.84 19.09 9.67 17.25 1473
FMOD [97] Moving Object Detection 2.48 6.73 1.52 16.09  289.7
KNN [98] Moving Object Detection 0.83 0.42 3048 3420 188.5
GSOC [99] Moving Object Detection 0.73 0.38 10.12  16.17  146.6
LSBP [100] Moving Object Detection 0.20 0.10 6.73 12.35  158.0
MEGA [101] Video Object Detection 5.20 2.71 65.60  48.23 8.3
FGFA [87] (FlowNet [86]) Video Object Detection 0.26 0.13 34.01 46.72 6.7
FGFA [87] (PWC-Net [88]) Video Object Detection 0.22 0.11 3195 4547 10.1
FGFA [87] (RAFT [89]) Video Object Detection 0.18 0.09 30.05 4297 8.8

B. Main Results

To provide a comprehensive benchmark, we conduct
extensive experiments on FADE, evaluating a range of state-
of-the-art methods, including our proposed FADE-Net, five
generic object detection methods, nine MOD methods, and
two video object detection methods. We use the metrics
defined in section III-E for performance evaluation. We specify
the implementation details of all algorithms (requirements,
hyperparameters, and training details) at https://github.com/
Zhengbo-Zhang/FADE

As can be seen in Table II, our proposed FADE-Net achieves
the highest performance across all four metrics. During the
training process, the CNN generates feature maps that are
significantly smaller than the original image, making it is
challenging for generic object detection methods to capture
features of small objects. However, the falling objects in
our dataset are of small size. To address this challenge, our
FADE-Net leverages multi-stage proposal refinement and an
area-based anchor mining strategy, enabling more effective
detection of small objects. Furthermore, motion blur caused
by the fast motion of falling objects can reduce the recall
of image-based detection models. To solve it, our FADE-Net
integrates the proposed Moving Attention Module, which fuses
motion information with appearance features to produce more
robust representations for falling object detection.

Although MOG?2 [45] is the best-performing MOD method,
it still shows a substantial precision gap compared to our
proposed FADE-Net. This is because FADE-Net effectively
extracts and utilizes both appearance and motion features
during inference, which significantly enhances falling object
detection. In contrast, the MOD method can only update
the model online during inference and lacks the ability to

exploit various informative features. This leads MOG2 to
detect certain moving objects that are not falling objects, such
as clouds and shadows. The detection results of LSBP [100]
contain numerous ghost regions, such as trailing areas behind
fast-moving objects that lie outside their actual contours [103],
resulting in the lowest precision and F-measure. MEGA [101]
combines global semantic information with local localization
cues and leverages more key frames in the video for detection,
achieving the second-best recall and TRO performance. How-
ever, since MEGA is not designed for small object detection,
its network struggles to capture the appearance features of
small falling objects. As a result, MEGA yields low precision
on the constructed FADE dataset.

The experimental results show that although our method is
not the fastest in terms of inference speed, it achieves superior
performance owing to the SMRPN and MAM modules, which
are specifically designed for FODB. In terms of performance,
our method significantly outperforms the second-best approach
(F-measure 72.08 vs 40.15).

C. Ablation Study

In this part, we conduct ablation studies to evaluate
the effectiveness of each module in our proposed method
FADE-Net. As shown in Table III, both accuracy and recall
are improved when adopting SMRPN. Notably, the recall
is boosted by more than 20% (26.39% vs 46.51%). This
indicates that multi-stage cascade refinement enhances the
detection accuracy. Additionally, employing a dynamic
area-based anchor mining strategy in the initial stage helps
avoiding missed detection of small objects. The adoption of
MAM resulted in a significant increase of 38.07% in the recall
rate. This indicates that incorporating motion information in
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TABLE III

PERFORMANCE OF DIFFERENT MODULES IN THE PROPOSED FADE-NET ON THE TESTING SET OF OUR FADE DATASET. WE USE A GTX 1080 TO
EVALUATE THE FPS OF THE ALGORITHM. THE BEST PERFORMANCES ARE HIGHLIGHTED IN BOLD

Faster R-CNN+FPN  SMRPN MAM  F-measure  Precision Recall TRO FPS
VA4 35.62 54.78 26.39 3250 16.5
VA v 53.42 62.75 46.51 39.19 16.2
vV Vv 61.72 59.21 6446 4725 159
v V4 Vv 72.08 73.52 70.69 51.77 157

C

Input feature map [MaxPool, AvgPool, Resized moving object mask]

Moving attention map

Output feature map

Fig. 8. Details of the Moving Attention Module. The Moving Attention Module is designed to fuse the appearance and motion information of objects. To
improve the robustness of the appearance features, we apply average pooling and max pooling to the input appearance features before the fusion step.

our method enables effective capture of high-speed falling
objects. The simultaneous usage of SMRPN and MAM
further enhances the detection performance, suggesting that
these two modules are complementary. Such improvement
also shows that the ability to detect small objects and capture
trajectories of moving objects contributes to the effectiveness
of falling object detection around buildings. Besides, the
experimental results show that introducing the SMRPN and
MAM modules has minimal impact on the inference speed
of our method. This is because the MAM module is built
upon an efficient GPU-accelerated MOG algorithm, while the
SMRPN functions primarily as a training-time strategy that
employs dynamic thresholds to generate proposals tailored
for small object detection.

D. Analysis of Optical Flow Based Methods in FODB

Optical flow is good at estimating motion information in
video by capturing the pixel-level dense motion field. It is
widely used in many video tasks, e.g. action recognition
[106], [107], [108], [109] and MOD [101], and makes good
performance. However, as shown in Table II, the optical flow
based methods FGFA (FlowNet [86]) [87] (the original method
using FlowNet to compute optical flow), FGFA (PWC-Net
[88]) [87], and FGFA (RAFT [89]) [87], do not obtain the
expected performance in falling object detection in our FADE
(the F-measure of FGFA (RAFT) is the second worst).

We think that there are two main reasons for the poor
performance of the optical flow based method in FODB task.
The first reason is motion blur and occlusion. Appearance of
a falling object constantly changes due to the motion blur
caused by the fast movement as well as the occlusion caused
by trees, neighboring buildings, et al. in the falling process.
The second is large displacements. The falling object produces
large displacements due to fast movement. With the challenges
of motion blur, occlusion, and large displacements, the optical
flow is hard to be estimated precisely.

E. Visualization Results

1) Optical Flow Images: As can be seen in Figure 9, we
plot the optical flow images generated by 4 popular optical
flow methods (FlowNet 2.0 [104], RAFT [89], PWC-Net [88],
and TV-L1 [105]) to visualize the performance of the optical
flow in our FADE dataset. The first three groups of optical
flow images, estimated by the deep learning based optical
flow algorithms [86], [88], [89], are very confusing, resulting
in the background and the moving object being difficult to
be distinguished. For the last group (i.e. last column) of
optical flow images, which are captured by the traditional
variational optical flow method [105], the movement of the
static background is well estimated, but the motion of the
moving objects is also poorly computed.

2) Visualization Results of Representative Methods: Visu-
alization results of the representative moving object detection
method (MOG?2 [45]), image object detection method (Faster
R-CNN [80]+FPN [81]), video object detection method
(MEGA [101]), and our proposed FADE-Net are shown in
Figure 10. Many detection results of MOG2 only capture
part of the falling object, as MOG2 applies morphological
opening in its post-processing, which tends to eliminate small
detections. Thus, some small falling objects on the video frame
cannot be detected. The accuracy of Faster R-CNN + FPN is
higher than the other two algorithms. However, this method is
also difficult to detect some small falling objects. In addition,
the motion blur caused by the fast motion also increases the
detection difficulty of the image-based detection model. The
accuracy of MEGA is the worst. This method does not learn
the appearance features and motion information of the falling
object well during the training process, and the lack of non-
maximum suppression processing further reduces its accuracy.
Our proposed method FADE-Net achieves the best perfor-
mance in all three video sequences, benefiting from seamlessly
integrating generic object detection and motion information in
videos. In addition, the designed Moving Attention Module
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(b)

(©

(d)

(e)

Fig. 9. Video frames in our FADE dataset and their corresponding optical flow field images estimated by different optical flow methods. (a) shows four
consecutive video frames containing a falling object from a building in our dataset. (b), (c), (d), and (e) show the corresponding optical flow images computed
by FlowNet 2.0 [104], RAFT [89], PWC-Net [88], and TV-L1 [105], respectively. To see the moving object in the falling object detection task clearly, we
enlarge the object in the frame and place it in the lower left corner of the video frame.

enables the network to assign adaptive weights to different
regions based on the motion information, effectively reducing
false detections in the image.

FE. Effect of Incorporating Long-Term Motion Information

Although our FADE-Net primarily focuses on utilizing
short-term temporal motion information due to the limited
computational capabilities of surveillance camera chips, in
this section, we also explore the effectiveness of incorporating
long-term motion information into our method.

Specifically, we revise our method to incorporate long-term
temporal information to experiment with long-term temporal
motion data. The revised method adopts a two-stream architec-
ture: one stream captures short-term motion, while the other
models long-term motion across the current frame and the
preceding five frames. Here, we evaluate the revised model
on the FADE dataset using a GTX 1080 GPU to simulate a
realistic deployment scenario. The experimental results show
that the performance of our original model is comparable to

TABLE IV

EFFECT OF INCORPORATING LONG-TERM MOTION INFORMATION IN THE
PROPOSED FADE-NET. THE BETTER RESULT IS INDICATED IN BOLD

Method F-measure  Precision Recall TRO  FPS
Ours w/o long-term 72.03 73.48 70.70 5175 15.7
Ours w/ long-term 72.08 73.52 70.69 5177 89

that of the revised model (see Table IV). We attribute this
to the high velocity of falling objects, which causes large
motion displacements over the long-term window, making
it challenging for the model to extract reliable long-term
motion cues.Moreover, we can observe from the experimental
results that the revised model incurs a certain loss in inference
efficiency compared to the original model (FPS 8.9 vs 15.7),
which may limit its applicability in real-world falling object
detection scenarios. Therefore, we focus on utilizing short-
term temporal motion information.
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Ground Truth

No detected falling object

No detected falling object

Faster RCNN + FPN

Detected falling object

Detected falling object
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FADE-Net

Containing some false de i D ted falling object

g

No detected falling object

No detected falling object Detected falling object

Fig. 10. We show ground-truth and the detection results of MOG2 [45], Faster R-CNN [80] + FPN [81], MEGA [101] and our proposed FADE-Net on three
frames sampled from a video. MOG2, Faster R-CNN + FPN and MEGA are representative algorithms of moving object detection, image object detection, and
video object detection respectively. In order to illustrate the difference between the detection results more clearly, we enlarge the regions around the falling

objects in the frames.

G. Effect of Introducing Domain Adaptation Techniques Into
Our Method

Since our falling object detection method is intended for
real-world deployment and is expected to operate continuously,
it may encounter unseen weather scenarios that were not
present during training. To address this, we explore the inte-
gration of domain adaptation techniques [110], [111], [112],
[113], commonly used in low-level vision tasks [110], [111],
[112], [113], [114] such as image deraining [110], [111] and
defogging [112], [113] to improve robustness, into our method
and evaluate their effectiveness in this context.

Specifically, we design two variants of our method by
integrating it with three different domain adaptation strategies,
including an adversarial training-based approach using the
Gradient Reversal Layer (GRL) [115], as well as a test-time
domain adaptation methods, Tent [116]. To better evaluate
these variants, we re-partitioned our proposed dataset so that

TABLE V

EFFECT OF DOMAIN ADAPTATION TECHNIQUES IN FADE-NET. WE USE A
GTX 1080 TO EVALUATE THE FPS OF THE ALGORITHMS. THE BETTER
RESULT IS INDICATED IN BOLD

Method F-measure  Precision Recall TRO FPS

Ours 72.08 73.52 70.69  51.77 15.7

Ours w/ GRL [115] 72.07 73.60 70.65 51.78 15.7
Ours w/ Tent [116] 72.15 73.63 70.73 51.80 10.7

the weather types in the training, validation, and test sets
do not overlap. To be specific, the training set contains fair
and cloudy conditions, the validation set contains overcast
conditions, and the test set contains rainy conditions. Notably,
this split is used only for this evaluation.

The experimental results are presented in Table V above.
From the results, we observe that the performance of Ours
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and Ours w/ GRL is comparable. We believe this is because,
although the domain adaptation technique (GRL) encourages
the backbone to extract domain-invariant appearance features,
in our task where the target objects are extremely small,
effectively leveraging motion features is more critical than
enhancing appearance features. This observation is further
supported by the ablation study, which compares the effective-
ness of the motion-focused Moving Attention Module and the
appearance-focused Small-Object Mining RPN. In addition, as
shown in Table V, our method benefits from the incorporation
of the test-time domain adaptation method Tent. However,
since Tent operates during inference, it introduces additional
computational overhead and reduces the algorithm’s FPS,
making it less suitable for real-world deployment. Therefore,
considering the overall trade-off between accuracy and infer-
ence speed, we adopt “Ours” as the final version.

VI. CONCLUSION

In this work, we propose a new large-scale video dataset
termed FADE for falling object detection around buildings
(FODB). It contains 2,611 videos and 245,177 video frames.
The videos in FADE include various categories of objects and
are captured under diverse scenes, weather conditions, lighting
conditions, and video resolutions. Notably, different from the
existing MOD datasets, our FADE is the first dataset special-
ized for FODB. Additionally, we introduce a new baseline
method called FADE-Net, which seamlessly integrates motion
information capturing and small-sized proposal mining into the
detection network. Furthermore, to better evaluate the FODB
algorithms, we design an evaluation metric called TRO, which
measures the algorithm’s ability to locate the beginning and
ending times of falling incidents.

We provide a comprehensive benchmark that includes our
FADE-Net baseline method, popular MOD methods, generic
object detection methods, and video object detection methods.
Extensive experimental results demonstrate that FODB is a
challenging task in the presence of complex backgrounds
and motion blur, and validating the effectiveness of our
explored baseline method FADE-Net. The FADE dataset, with
its diverse videos, will promote the progress of FODB and
may also be useful for the investigation of MOD, generic
object detection, and video object detection. In future, we will
continue to refine and expand the dataset FADE, and explore
more advanced FODB methods.
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